Second Nine Weeks

Common Core State Standards for ELA (Outcome Based)	"I Can" Statements (Knowledge & Skills)	Curriculum Materials & Resources/Comments	Vocabulary, Signs, & Symbols	Assessment
Operations and Algebraic Thinking (OA)1.OA.3. Apply properties of operations as strategies to add and subtract.Examples: If $8 + 3 = 11$ is known, then $3 + 8 = 11$ is also known. (Commutative property of addition.)To add $2 + 6 + 4$, the second two numbers can be added to make a ten, so $2 + 6 + 4 = 2 + 10 = 12$. (Associative property of addition.)	I can use properties of operations to add and subtract. (2*, 3, 4)	Resource Binder Math Internet Resource Appendix (MIRA)	Commutative Property Associative Property	
1.OA.4. Understand subtraction as an unknown-addend problem. For example, subtract 1 0 – 8 by finding the number that makes 10 when added to 8.	I can understand the meaning of an unknown addend. (1,2*) I can use subtraction to find the unknown addend. (1,2*)	Resource Binder Math Internet Resource Appendix (MIRA)	Missing Addend	

1.OA.5. Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).	I can count by different units to add. (2*, 3, 4*,) I can count by different units. (2*, 3, 4*)	Resource Binder Math Internet Resource Appendix (MIRA)	Units	
 1.OA.6. Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 - 4 = 13 - 3 - 1 = 10 - 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows 12 - 8 = 4); creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13). 	I can demonstrate fluency in addition by correctly using a one minute skill drill. (1*, 2*, 3*, 4*) I can demonstrate fluency in subtraction by correctly a 1 minute skill drill. (1*, 2*, 3*, 4*)	Resource Binder Math Internet Resource Appendix (MIRA)	Multiple Representations	

1.OA.7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6 = 6$, $7 = 8 - 1$, $5 + 2 = 2 + 5$, $4 + 1 = 5 + 2$.	I can decide if addition and subtraction equations are true or false. (1, 2*, 3*, 4)	Resource Binder Math Internet Resource Appendix (MIRA)	Equal Equations Equivalent
1.OA.8. Determine the unknown whole number in an addition or subtraction equation relating to three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 + ? = 11, 5 = \Box - 3, 6$ $+ 6 = \Box$	I can solve equations to determine the unknown number that makes the equation true. (1,2*)	Resource Binder Math Internet Resource Appendix (MIRA)	Equation
Numbers and Operations in Base Ten (NBT) 1.NBT.1. Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.	I can count to 120 starting at any number less than 120. (1, 2, 3*) I can read and write numbers to 120 using numbers and objects. (1, 2, 3*)	Resource Binder Math Internet Resource Appendix (MIRA)	Numbers Numerals

1.NBT.3. Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.	I can recognize greater than (>), less than (<) and equal to (=) symbols. (2*,3*,4) I can compare 2 digit numbers using the symbols. (2*,3*,4)	Resource Binder Math Internet Resource Appendix (MIRA)	Compare Greater Than (>) Less Than (<) Equal to (=)
1.NBT.5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.	I can use hundreds chart to add and subtract 10 from a number. (2*) I can mentally add or subtract 10 or more or 10 less than a two-digit number. (2*)	Resource Binder Math Internet Resource Appendix (MIRA)	Mental Math
1.NBT.6. Subtract multiples of 10 in the range 10–90 from multiples of 10 in the range 10–90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	I can subtract multiples of ten with positive or zero differences. (2*)	Resource Binder Math Internet Resource Appendix (MIRA)	Multiples

Measurement and Data (MD) 1.MD.3. Tell and write time in hours and half-hours using analog and digital clocks.	I can identify the parts of a clock. (2,3*) I can tell time to the hour using analog and digital clocks. (2,3*) I can tell time to the half-hour using analog and digital clocks. (2,3*) I can write time correctly in hours and half-hours using the colon, etc. correctly. (2,3*)	Resource Binder Math Internet Resource Appendix (MIRA)	Colon Digital Analog Minute hand Hour hand	
1.MD.4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.	I can create a bar graph and picture graph with up to 3 categories. (2*) I can analyze graphs using mathematical language such as more than, less than, etc. (2*)	Resource Binder Math Internet Resource Appendix (MIRA)	Bar graph Picture graph Data Categories	

Geometry (G) 1.G.1. Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus nondefining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.	I can identify defining attributes of two and three dimensional shapes. (2*,3) I can identify non-defining attributes of two and three dimensional shapes. (2*,3) I can illustrate two and three dimensional shapes showing attributes. (2*,3)	Resource Binder Math Internet Resource Appendix (MIRA)	Two-dimensional Three-dimensional Defining Attributes Non-defining attributes
 1.G.2. Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half- circles, and quarter-circles) three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. 	I can identify two-dimensional shapes. (2*, 3) I can Identify three-dimensional shapes. (2*,3) I can use shapes to compose and decompose. (2*,3)	Resource Binder Math Internet Resource Appendix (MIRA)	Rectangle Square Trapezoid Triangle Half-circle Quarter-circle Cube Right-rectangular prism Right circular cone Right circular cylinder

1.G.3. Partition circles and rectangles into two and four equal shares, describe the shares using the words <i>halves, fourths,</i> and <i>quarters,</i> and use the phrases <i>half of, fourth of,</i> and <i>quarter of.</i> Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.	I can divide circles and rectangles into halves, fourths, and quarters. (2*, 3) I can identify equal shares (parts is the current vocabulary; however, use the term shares). (2*,3) I can explain the part/whole relationship. (2*,3) I can understand that decomposing creates smaller shares.(2*,3)	Resource Binder Math Internet Resource Appendix (MIRA)	Fractions Halves Fourths Quarters Compose Decompose Shares	
--	--	--	--	--